Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
World J Pediatr ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664324

ABSTRACT

BACKGROUND: Pediatric post coronavirus disease 2019 (COVID-19) condition (PPCC) is a heterogeneous syndrome, which can significantly affect the daily lives of children. This study aimed to identify clinically meaningful phenotypes in children with PPCC, to better characterize and treat this condition. METHODS: Participants were children with physician-diagnosed PPCC, referred to the academic hospital Amsterdam UMC in the Netherlands between November 2021 and March 2023. Demographic factors and information on post-COVID symptoms, comorbidities, and impact on daily life were collected. Clinical clusters were identified using an unsupervised and unbiased approach for mixed data types. RESULTS: Analysis of 111 patients (aged 3-18 years) revealed three distinct clusters within PPCC. Cluster 1 (n = 62, median age = 15 years) predominantly consisted of girls (74.2%). These patients suffered relatively more from exercise intolerance, dyspnea, and smell disorders. Cluster 2 (n = 33, median age = 13 years) contained patients with an even gender distribution (51.5% girls). They suffered from relatively more sleep problems, memory loss, gastrointestinal symptoms, and arthralgia. Cluster 3 (n = 16, median age = 11 years) had a higher proportion of boys (75.0%), suffered relatively more from fever, had significantly fewer symptoms (median age of 5 years compared to 8 and 10 years for clusters 1 and 2 respectively), and experienced a lower impact on daily life. CONCLUSIONS: This study identified three distinct clinical PPCC phenotypes, with variations in sex, age, symptom patterns, and impact on daily life. These findings highlight the need for further research to understand the potentially diverse underlying mechanisms contributing to post-COVID symptoms in children.

2.
BMJ Open Respir Res ; 11(1)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663887

ABSTRACT

BACKGROUND: Four months after SARS-CoV-2 infection, 22%-50% of COVID-19 patients still experience complaints. Long COVID is a heterogeneous disease and finding subtypes could aid in optimising and developing treatment for the individual patient. METHODS: Data were collected from 95 patients in the P4O2 COVID-19 cohort at 3-6 months after infection. Unsupervised hierarchical clustering was performed on patient characteristics, characteristics from acute SARS-CoV-2 infection, long COVID symptom data, lung function and questionnaires describing the impact and severity of long COVID. To assess robustness, partitioning around medoids was used as alternative clustering. RESULTS: Three distinct clusters of patients with long COVID were revealed. Cluster 1 (44%) represented predominantly female patients (93%) with pre-existing asthma and suffered from a median of four symptom categories, including fatigue and respiratory and neurological symptoms. They showed a milder SARS-CoV-2 infection. Cluster 2 (38%) consisted of predominantly male patients (83%) with cardiovascular disease (CVD) and suffered from a median of three symptom categories, most commonly respiratory and neurological symptoms. This cluster also showed a significantly lower forced expiratory volume within 1 s and diffusion capacity of the lung for carbon monoxide. Cluster 3 (18%) was predominantly male (88%) with pre-existing CVD and diabetes. This cluster showed the mildest long COVID, and suffered from symptoms in a median of one symptom category. CONCLUSIONS: Long COVID patients can be clustered into three distinct phenotypes based on their clinical presentation and easily obtainable information. These clusters show distinction in patient characteristics, lung function, long COVID severity and acute SARS-CoV-2 infection severity. This clustering can help in selecting the most beneficial monitoring and/or treatment strategies for patients suffering from long COVID. Follow-up research is needed to reveal the underlying molecular mechanisms implicated in the different phenotypes and determine the efficacy of treatment.


Subject(s)
COVID-19 , Phenotype , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Female , Male , Middle Aged , Aged , Severity of Illness Index , Adult , Cohort Studies , Respiratory Function Tests , Cluster Analysis , Forced Expiratory Volume , Time Factors
3.
J Pers Med ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37511673

ABSTRACT

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies.

4.
Pediatr Allergy Immunol ; 34(2): e13919, 2023 02.
Article in English | MEDLINE | ID: mdl-36825736

ABSTRACT

BACKGROUND: Uncontrolled asthma can lead to severe exacerbations and reduced quality of life. Research has shown that the microbiome may be linked with asthma characteristics; however, its association with asthma control has not been explored. We aimed to investigate whether the gastrointestinal microbiome can be used to discriminate between uncontrolled and controlled asthma in children. METHODS: 143 and 103 feces samples were obtained from 143 children with moderate-to-severe asthma aged 6 to 17 years from the SysPharmPediA study. Patients were classified as controlled or uncontrolled asthmatics, and their microbiome at species level was compared using global (alpha/beta) diversity, conventional differential abundance analysis (DAA, analysis of compositions of microbiomes with bias correction), and machine learning [Recursive Ensemble Feature Selection (REFS)]. RESULTS: Global diversity and DAA did not find significant differences between controlled and uncontrolled pediatric asthmatics. REFS detected a set of taxa, including Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with an average classification accuracy of 81% (saliva) and 86% (feces). These taxa showed enrichment in taxa previously associated with inflammatory diseases for both sampling compartments, and with COPD for the saliva samples. CONCLUSION: Controlled and uncontrolled children with asthma can be differentiated based on their gastrointestinal microbiome using machine learning, specifically REFS. Our results show an association between asthma control and the gastrointestinal microbiome. This suggests that the gastrointestinal microbiome may be a potential biomarker for treatment responsiveness and thereby help to improve asthma control in children.


Subject(s)
Asthma , Microbiota , Humans , Child , Quality of Life , Asthma/drug therapy , Bacteria , Feces/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...